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A method based on the solution of a linearized third-order heat-conduction equation 
is proposed for the determination of intense thermal fluxes. 

In studies of the flow of a plasma jet around solid bodies the question often arises of 
determining the magnitudes of both stationary and nonstationary heat fluxes incident on the 
surface being heated. 

According to experimental data [I], it can be assumed that the heat flux in such situa- 
tions varies according to a law: 

qU) = %(1 -- e-6~). (1) 
If we perform a numerical solution of thenonlinear heat-conduction equation with bound- 

ary condition (i), in which we assume qo = 3 kW/cm a and ~ = 31.54 sec -I [i], and 

t (x, O) = to, (2) 
where to is a constant temperature, w e can obtain the discrete temperature field as a func- 
tion of coordinate and time. The results of such a calculation for a copper plate of length 
R = 50-10 -s m are shown in Table I. 

The problem of the present study then consists of proceeding from the numerically ob- 
tained temperature field to determine the original heat flux -- Eq. (I). If their values co- 
incide satisfactorily, the validity of the approach used will be confirmed. 

The ~onlinear heat-conduction equation 

P~176 C~@) 0@0~ OxO [ OxO@ ] (3) - (Zo Z l O ) - = - =  , 

where 

~ ( o )  = %0 + z , o ,  (4 )  

~ ( o )  = c o + c~o  (5 )  

are functions expressing the linear temperature dependence of the coefficients of thermal 
conductivity and specific heat, respectively, while e(x, r) = t(x, ~) -- to can be written 
in the form 

O (@ @ %~ O~ ) OZ ( %1 @a)= 1 ( C  i %~) c)Z@--~(x, ~). (6) 
Oz 2% 0 -- a ~  O + 2%0 - - 2 -  Co ~oo O'rz 

Now, assuming the function ~(x, T) continuous and n-times differentiable with respect to the 
spatial coordinate x, Eq. (6) can be written as 

where E 

n=0 

( ) 82 ( ~ ) - S  1 qS('Z)(O,'r)(X--Xo) '~, (7) a @-!- ~'~ -@2 = a ~  @-~- 02 + n! c]-~ 2t"~ ' Ox2 2%0 n=0 

qS(n)(0, T)(X--X0) n is an expansion of the function ~(x, ~) in the spatial co(~rdinate 

x at the arbitrary point x = xo. 
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TABLE i. 
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0,06 
0,08 
0,I0 
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t3t ,9 
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3 5 

1,9 ~0, l 
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77,6 32,0 
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0,9 

'f t I i i 2 

I 
o j8  t 278,8{2,~,8 
0,20 130~-,0t 238,5 
0,22 ~323 7|259 l 
0,24 t 34414 / 27817 
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0,28 382,8 315,5 
0,30 ,400,81332,8 
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x, mm 

3 5 

165,91 92,5 
185,81 lo7,9 
294,81 123,1 
223,1 I 138,0 
240,7[ 152,6 
257~7 166,9 
274, t 180,9 

15 

1;6 
2,6 
4,0 
5,6 
7,5 
9,7 

t2,2 

Analogously, as was done in [2], limiting ourselves to n terms on the right side of Eq. 
(7), after n-fold differentiation we obtain a linear differential equation of order n + 2: 

a~+l ( ~,l ) On+2 ( ~ ) 
O +  , 0" = a  o 0 ~ O z (8 )  

ax"O.c 2L o Ox "+9" 2X o " 

In [2], ~hird-and four th-~rder linear heat-conduction equations were also compared with the 
exact solution of the nonlinear heat-conduction equation and it was shown that the former 
provide completely satisfactory accuracy for practical use. 

Thus, limiting ourselves to a third-order linear heat-conduction equation, the mathema- 
tical formulation of the problem under consideration will b e  as follows: 

O + 0 2 ::ao 0 ~ 0" (9) 
O x &  , 2~.o "-~x U ~ 2~,o 

('0+ ~'' 6)2)'  
, 2z--7 ,~=0] : o ,  (1o) 

@ + 2Lo )''J 02) {.,.=m. := q4("c) 2XoX' q, iCr) =_ qhCr), ( l l )  

( O F  )~L_ - ~ Z )  -=q~2(T)-- l i  g~(z )= :~z(T) ,  (12)  
2~o ~=~ 2Xo 

( 0 •  2Xo~t ~ 2 )  x=R ~q)3(T) . . jU 2 _ ~ o  (~3(T)~_,t[~3(T), (13) 

w h e r e  ~ x ( x ) ,  qo:2(z), a n d  ~3( ; r )  a r e  t e m p e r a t u r e s  t a k e n  f r o m  t h e  n u m e r i c a l  s o l u t i o n  a t  p o i n t s  
Rx, R2, and Rs, respectively. 

Taking the Laplace transform, we obtain a solution for the image in the form 

T *t  (s) -- ( ' t  (s) --*z(s)) 

/" s R3- -x  
/ s x - - R t  sh V 

sh 1// ao 2 a o 2 

V /" s R z Rl s h l /  s R 3 - - R ,  sh - �9 " 
a o 2 | a o 2 

sh 
% 2 a o 2 

(~21 (s) - -  ~23 (s)) /- s R3 - -  R~ sh shV 2 1/ oS R3--R,.2 

Then transforming to the original and limiting ourselves to only third-order derivatives of 
the functions ~I(T), ~2(T), and ~s(T), the solution of system (9)-(13) can be represented as 
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O §  
2Lo 

(x - -  R,) (R~ " -  x) 
O~ = *~ (~) - -  ( ~  (~) - -  *~ (~)) ( R = - -  R~)  (R~ - -  R~)  

0,h ( '0  - -  * ~ (x - -  R , )  (x - -  R~) 
- -  3 \  ) I  ~ . . . . . .  

( R  3 - -  R i )  (R3 - -  R2)  

- -  ( r  (T) - -  r (~)) (x - -  R , )  (R~ - -  x)  ( R ~ - -  ~) (R~ - -  R~ § R ,  - -  x)  

12% (R,~ --  R~) (R~ --  RO 
- -  ( , i  (~) - -  r (~)) (~ - -  R , )  (x  - -  R~) (n~  - -  x)  (R~ + R ,  - -  R~ - -  x)  

12% (R~ - -  R~) (R~.-- R2) 
(i5) 

Differentiating Eq. 
equal to zero, we obtain 

(15) on the left and right with respect to x and setting the result 

R ~ R I  3 i 

(R 3 - -  R2) (R 2 - -  R , )  

q (~) = % [(*, (~) - -  ~ (~)) 

_ (% ( ~ ) _ , a  (~)) (R3 __RR2~ R~ 
(R3--RI) 

§ 

' ( ~  (T) - -  ~ (~)) (R3 + R i i  (R3Rz + R3R~ + R~R, - -  R~) _ 
12ao(R3--R~)(R2--Rt) 

.. ~ 12ao(R3__R~)(R3_~_RI) (16) 

for determination of the heat fluxes incident on the surface of the solid bodies, 

From Eq. (16) it follows that the heat-fLux function q(r) depends on the functio=~s ~:(T), 
~2(r), and ~3(T), which are usually taken from experiment, and on the first derivatives of 
these functions. However, numerical differentiation, in contrast to numerical integration, 
is within therclass of incorrectly posed problems. Therefore, to obtain reliable rest~lts in 
these cases it is necessary to use approaches developed in the theory of numerical dilferen- 
tiation [3-7]. In particular, in [7], methods of smoothing the desired function and finding 
its derivatives up to second order, based on the method of least squares and distinguished by 
its simplicity and satisfactory accuracy, are described. 

Figure l presents results of determining the heat flux--Eq. (I) -- obtained with Eq. 
(16) and the temperature field presented in Table i. The first derivatives of the fur~ctions 
%(~), ~2(~), and ~3(T) were calculated by the method described in [7]. 

It follows from Fig. I that the calculated data agree better with the original eqnation 
(I) the closer to the heating surface the values of temperature and its derivatives ale tak- 
en -- curve 2, where the divergence of results is not greater than 2%. Curves 3, 4, snd 5 
diverge from curve 1 by about 5%, which may be due to degradation of the degree of tempera- 
ture-field approximation at the point x = 0. 

2 
=~=== 

4 # 

Fig. I. Determination of heat flux: curve I) orig- 
inal equation (i); 2, 3,4, 5)using Eq. (16) with 
RI,2,3 = i, 3, and 5 mm; RI,2,3 = i, 5, and 15 mm; 
Ri,2,s = 2, 5, and 15 mm; and Ri,2,a = 3, 5, and 15 
mm, respectively, q, kW/cm2; r, sec. 
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It should be noted that all cases of determining heat ~lux considered here give good 
results, while the proposed method of flux determination is distinguished by simplicity and 
can be recommended for practical use. 
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TWO-PKASE ZONE DURINCs OF A BINARY MELT 

P. F. Zavgorodnii, L. P. Moroz, 
F. V. Nedopekin, and G. M. Sevost'yanov 

UDC 541.12.012:669.112.2 

A method is developed for calculating the solid--liquid zone, which is intermediate 
between the regions of the liquid and the solid phases, of a solidifying binary melt. 
Melts of Fe--C with different initial carbon contents were chosen as the binary melt. 

The thermal and diffusional processes occurring in the two-phase zone have considerable 
importance in the formation of the micro- and macrostructures of ingots and castings. 

The study of the kinetics of the movement of the zone under different conditions of 
crystallization and thequestion of the extent of the two-phase zone have great importance, 
since they determine the maintechnological properties of the metals. 

The processes of a two-phase zone were studied in a region for which a diagram (of half) 
is presented in Fig. la. 

The two-phase state of the medium at each point n is conveniently characterized by the 
function ~(n, Fo), representing the fraction of the solid phase in the liquid melt at the 
isotherm with the coordinate n at the time Fo [I, 2]. All the isotherms are assumed to be 
parallel planes perpendicular to the On axis. The coefficients of thermal conductivity 1 
and heat capacity Cp are the same and are equal for the solid and liquid phases. The con- 
centration C(n, Fo) of the admixture at one isotherm is the same at all points of the melt 
[3]. The character of the occurrence of diffusional processes allows one to assume that the 
rate of diffusion of the admixture into the solid phase is small in comparison with the rate 
of diffusion of the same admixture into the liquid melt. Crystals develop in the liquid 
phase in the process of crystallization. As this happens, the latent heat of fusion is re- 
leased, depending on the rate of change of the amount of solid melt. It is expedient to 
treat the effect of the developing crystals on the fields of temperature T(n, Fo) and concen- 
tration C(~, Fo) as the action of additional sources of heat and admixture. Moreover, we as- 
sume that concentration supercooling is absent within the two-phase zone. Mathematically, 
this means that the concentration and temperature are connected by the equation for the liq- 
uidus line on the equilibrium diagram of state [i, 2]. 

With allowance for the foregoing and for simple transformations of the equations of the 
quasiequilibrium theory of a two-phase zone [i, 2], the processes of mass and heat transfer 
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